Depth-Resolved Multispectral Sub-Surface Imaging Using Multifunctional Upconversion Phosphors with Paramagnetic Properties.

نویسندگان

  • Zaven Ovanesyan
  • L Christopher Mimun
  • Gangadharan Ajith Kumar
  • Brian G Yust
  • Chamath Dannangoda
  • Karen S Martirosyan
  • Dhiraj K Sardar
چکیده

Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In vitro tests reveal no significant toxicity, whereas the magnetic measurements of the phosphors show that the particles are suitable as magnetic resonance imaging agents. The confocal imaging of fibroblast cells with these phosphors reveals their potential for in vivo imaging. The depth-resolved imaging technique with such phosphors has broad implications for real-time intraoperative surgical guidance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimodal bioimaging using rare earth doped Gd2O2S: Yb/Er phosphor with upconversion luminescence and magnetic resonance properties.

While infrared upconversion imaging using halide nanoparticles are so common the search for a very efficient halide free upconverting phosphors is still lacking. In this article we report Gd2O2S:Yb/Er,YbHo,YbTm systems as a very efficient alternative phosphors that show upconversion efficiency comparable or even higher than existing halide phosphors. While the majority of rare earth dopants pro...

متن کامل

Synthesis of brightly PEGylated luminescent magnetic upconversion nanophosphors for deep tissue and dual MRI imaging.

A method is developed to fabricate monodispersed biocompatible Yb/Er or Yb/Tm doped β-NaGdF4 upconversion phosphors using polyelectrolytes to prevent irreversible particle aggregation during conversion of the precursor, Gd2 O(CO3 )2.H2 O:Yb/Er or Yb/Tm, to β-NaGdF4 :Yb/Er or Yb/Tm. The polyelectrolyte on the outer surface of nanophosphors also provided an amine tag for PEGylation. This method i...

متن کامل

Contrast-Enhanced Multispectal Upconversion Fluorescence Analysis for High-Resolution in-vivo Deep Tissue Imaging

Lanthanide-doped upconversion nanoparticles which can convert near-infrared lights to visible lights have attracted growing interest because of their great potentials in fluorescence imaging. Upconversion fluorescence imaging technique with excitation in the near-infrared (NIR) region has been used for imaging of biological cells and tissues. However, improving the detection sensitivity and dec...

متن کامل

Multispectral upconversion luminescence intensity ratios for ascertaining the tissue imaging depth.

Upconversion nanoparticles (UCNPs) have in recent years emerged as excellent contrast agents for in vivo luminescence imaging of deep tissues. But information abstracted from these images is in most cases restricted to 2-dimensions, without the depth information. In this work, a simple method has been developed to accurately ascertain the tissue imaging depth based on the relative luminescence ...

متن کامل

Enhancing upconversion luminescence of NaYF4:Yb/Er nanocrystals by Mo(3+) doping and their application in bioimaging.

Enhancement of upconversion luminescence is imperative for the applications of upconversion nanocrystals (UCNs). In this work, we investigated the upconversion luminescence enhancement of NaYF4:Yb/Er by Mo(3+) ion doping. It was found that the upconversion luminescence intensities of the green and red emissions of UCNs co-doped with 10 mol% Mo(3+) ions were enhanced by 6 and 8 times, respective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 7 38  شماره 

صفحات  -

تاریخ انتشار 2015